

Energy Transfer

$>$ The amount of heat transferred during a process between two states (1 and 2) is denoted by Q12 or Q (in J or kJ).

$$
Q=m x C x \Delta T
$$

\checkmark Heat transfer per unit mass of a system is denoted by $q(=Q / m)$

Lecture 3

Energy Transfer

$>$ For a system with a source heat and a heat sink:

$$
Q_{\text {net }}=\sum Q_{\text {in }}-\sum Q_{o u t}
$$

\rightarrow The heat transfer rate is denoted by $\quad(k J / s=k W)$.
\checkmark When Q varies with time

$$
Q=\int_{t_{1}}^{t_{2}} \dot{Q} d t
$$

\checkmark When Q remains constant

$$
Q=\dot{Q} \Delta t
$$

\square Radiation: Transfer of energy due to the emission of electromagnetic waves (or photons)

Lecture 3

Energy Transfer

Energy Transfer by Work:

> Work is the energy transfer associated with force acting through a distance.

$$
\text { Work }=\int_{x_{1}}^{x_{2}} F d x \quad \text { Unit : N.m }=\mathbf{J}(\text { Joule })
$$

$>$ Power $=$ the work done per unit time.
$>$ There are two requirements for a work interaction between a system and its surroundings to exist:

1- There must be force acting on a boundary
2- The boundary must move
$>$ The area under the process curve on a $P-V$ diagram is equal, in magnitude, to the work done during expansion or compression process of a closed system.

$$
W=\int_{x_{1}}^{x_{2}} F d x=\int_{x_{1}}^{x_{2}} P A d x=\int_{V_{1}}^{V_{2}} P d V
$$

Significance of the ${ }^{x_{1}}$ Path:
$>$ Each path will have a different area underneath it.
> The boundary work done during a process depends on the path followed as well as the end states.

Lecture 3

Energy Transfer

The work due to the relations between pressure and volume:

- Polytrophic process: $P V^{n}=C$

$$
P V^{n}=C \Rightarrow P_{1} V_{1}^{n}=P_{2} V_{2}^{n} \Rightarrow P=\frac{C}{V^{n}}
$$

$$
W=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-n} d V=C \int_{1}^{2} V^{-n} d V
$$

$$
W=\left.C \frac{V^{-n+1}}{-n+1}\right|_{V_{1}} ^{V_{2}}=C \frac{V_{2}^{-n+1}-V_{1}^{-n+1}}{-n+1}
$$

$$
W=\frac{P_{2} V_{2}^{n} V_{2}^{-n+1}-P_{1} V_{1}^{n} V_{1}^{-n+1}}{-n+1}
$$

$$
\therefore \mathrm{W}=\frac{P_{1} V_{1}-P_{2} V_{2}}{n-1}
$$

\square Isothermal process: $P V=C$

$$
\begin{aligned}
& P V=m R T=C \text { or } P=C N \quad(T=\text { Constant }) \\
& W=\int_{1}^{2} P d V=\int_{1}^{2} \frac{C}{V} d V=C \int_{1}^{2} \frac{d V}{V}=C \ln \frac{V_{2}}{V_{1}}=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=m R T \frac{V_{2}}{V_{1}}
\end{aligned}
$$

\square Constant pressure process:

$$
\begin{aligned}
& W=\int_{1}^{2} P d V=P_{0} \int_{1}^{2} d V= \\
& P_{0}\left(V_{2}-V_{1}\right)=m P_{0}\left(v_{2}-v_{1}\right)
\end{aligned}
$$

\square Constant Volume process

$$
W=\int_{\text {ahmoud Metwally El_semary }}^{2} P d \underbrace{0}_{1}=0
$$

The Work:

Energy Transfer

Work is the force acting through a displacement and the displacement being in the direction of force.

$$
W=\int_{1}^{2} P . d V
$$

\square For Polytropic process:

$$
W=\frac{P_{1} V_{1}-P_{2} V_{2}}{n-1}
$$

\square For Isothermal process

$$
W=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=P_{1} V_{1} \ln \frac{P_{1}}{P_{2}}
$$

\square For Isobaric process:

$$
W=P_{1} \times\left(V_{2}-V_{1}\right)
$$

For Isochoric process:

$$
W=\text { Zero }
$$

Example

Determine the power required to accelerate a $900-\mathrm{kg}$ car from rest to velocity of $80 \mathrm{~km} / \mathrm{h}$ in 20 s on a level road.

Solution

$$
\begin{aligned}
& W=1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right) \\
& W=1 / 2(900 \mathrm{~kg})\left[\left(\frac{80,000 \mathrm{~m}}{3,600 \mathrm{~s}}\right)^{2}-0\right]\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{kgm}^{2} / \mathrm{s}^{2}}\right) \\
& W=222 \mathrm{~kJ}
\end{aligned}
$$

The average Power

$$
\dot{W}=\frac{W}{\Delta t}=\frac{222 \mathrm{~kJ}}{20 \mathrm{~s}}=11.1 \mathrm{~kW}
$$

Example Constant Volume Process

A rigid tank contains air at 500 kPa and $150^{\circ} \mathrm{C}$. As a result of heat transfer to surroundings, the temperature and pressure inside the tank drop to $65^{\circ} \mathrm{C}$ and 400 kPa , respectively. Determine the boundary work done during this process.

Solution

A rigid tank has a constant volume and so $d V=0$.

$$
W=\int^{2} P d W^{0}=0
$$

Lecture 3

Example Constant Pressure Process

Energy Transfer

A frictionless piston-cylinder device contains 10 kg of water vapor at 500 kPa and $250^{\circ} \mathrm{C}$. Heat is now transferred to the steam until the temperature reached $350^{\circ} \mathrm{C}$. Determine the work done by the steam during this process.

Solution

From the table

$$
\begin{aligned}
& \text { At } P=500 \mathrm{kPa}=0.5 \mathrm{MPa} \\
& \text { and } T_{1}=250^{\circ} \mathrm{C}: \\
& \quad v_{1}=0.4744 \mathrm{~m}^{3} / \mathrm{kg} \\
& \text { and } T_{2}=350^{\circ} \mathrm{C} \\
& v_{2}=0.5701 \mathrm{~m}^{3} / \mathrm{kg} . \\
& W=\int_{1}^{2} P d V=P_{0} \int_{1}^{2} d V= \\
& P_{0}\left(V_{2}-V_{1}\right)=m P_{0}\left(v_{2}-v_{1}\right) \\
& W=10 \mathrm{~kg} \times 500 \mathrm{kPa} \times(0.5701-0.4744) \mathrm{m}^{3} / \mathrm{kg} \times\left(1 \mathrm{~kJ} / \mathrm{kPa} . \mathrm{m}^{3}\right) \\
& W=479 \mathrm{~kJ}
\end{aligned}
$$

